Historical Context
In the early Imperial period of Rome, the city of Salona (modern day Solin) was the capital of the Roman province of Dalmatia, with an estimated population in excess of 50,000 people. To date, no large port has been found that served the city of Salona, but sites of numerous villas along the coast have been located; these villas were likely sites of numerous villas along the coast have been found that served the city of Salona, but with an estimated population in excess of 50,000 people. To date, no large port has been found that served the city of Salona, but sites of numerous villas along the coast have been located; these villas were likely associated with seafaring and economic activity that supported Salona.

Discovery of the Ship
Several seasons of excavations at multiple sites around the Bay of Kaštela have identified Imperial-era remains of seafaring activities, including wooden pilings, sea walls, and amphorae piles. In 2002, a large perforated dolium was discovered which had probably been repurposed for storing live fish by drilling holes in it. During the recovery of the dolium, researchers located a nearby concentration of Dressel 20 amphorae trapped within a wooden piling, and in 2006 also identified the outline of a ship intentionally scuttled alongside a Roman wooden sea wall by filling it with rocks.

The Ship
Built shell first, with mortise and tenon plank joinery and frames attached to the shell by wooden pegs driven from outside-in, the ship was clearly well-used before it was scuttled; several repaired planks were noted, including repair tenons coated with pitch. Frame construction varied throughout the ship—some frames were mostly floor timber/futtock combinations, alternating with half-frames in several positions. Some frames appeared to be repaired during the life of the ship. The most unique construction feature was the density of frames: 69 frames were used in a length of only 12 meters. Some frames were so closely spaced that it was difficult to insert a hand between the two frames. Frame construction varied throughout the ship—some frames were mostly floor timber/futtock combinations, alternating with half-frames in several positions. Some frames appeared to be repaired during the life of the ship. The most unique construction feature was the density of frames: 69 frames were used in a length of only 12 meters. Some frames were so closely spaced that it was difficult to insert a hand between the two frames. Four hundred wood samples were taken during the excavation, for the analysis of wood species used for building and repairing the ship. 230 artifacts were cataloged and photographed, including an oil lamp, two Roman coins, and numerous pieces of broken ceramic.

15th Excavation
An international team of student archaeologists, led by Dr. Irena Radić-Rossi of the University of Zadar, Croatia, and Dave Ruff, PhD candidate at Texas A&M University, fully excavated the ship from April 13th through May 10th. The weather cooperated, with 23 diving days conducted, and only one day of diving cancelled due to high winds. The team logged 267 dives, executing 624 hours of bottom time. This year’s work uncovered the previously excavated section, and also completed excavation of the rest of the ship. The four weeks of the excavation were consumed by removal of stones and sediment from the wreck, documentation of the ship’s construction, photogrammetry of the site, and extensive sampling of the ship and overall site.

Way Ahead
The study of the Trstenik ship is part of the Adria5 project (Archaeology of Adriatic Shipbuilding and Seafaring), a four-year international project sponsored by the Croatian Science Foundation. The research of the Trstenik site as well as other Roman sites around the Bay of Kaštela will continue in future years with the scope of the overall site analysis.

Acknowledgments
This excavation was funded by the 2015 Claude Duthuit Grant from the Institute of Nautical Archaeology. Additional support was provided by the University of Zadar and the Center for Maritime Archaeology and Conservation of Texas A&M University.